Client Account:   Login
Home Site Statistics   Contact   About Us   Sunday, March 26, 2017

users on-line: 2 | Forum entries: 6   
j0110924 - Back to Home
   Skip Navigation LinksHOME › AREAS OF EXPERTISE › Differential Equations Methods › ~ Higher-Order Differential Equations


      Skip Navigation Links
   DISCUSSION   
   MULTIRUNGE-KUTTA4 METHOD   
   IMPLEMENTATION   
   OUR SOLUTIONS   
 

DISCUSSION
Discussion of Runge-Kutta for Systems

The methods discussed in previous tabs (refer to menu)  "ODE - Euler Method" and   "ODE - 2nd-Order Runge-Kutta" and   "ODE - 4th-Order Runge-Kutta" apply to only a single first-order ordinary differential equation as described in these tabs.

However, most problems in engineering governed by differential equations are either high-order equations or coupled differential equation systems.

A high-order differential equation can always be transformed into a coupled first-order system of equations. The trick is to expand higher-order derivatives into a series of first-order equations.

A very common example described in technical literature applies to model a spring-mass system with damping, which describes the use and calculation of second-order differential equations. We followed very closely these techniques for our own implementation.

m d2x / d t2 = -kx - b dx/dt

where k is the spring constant and b is the damping coefficient. Since the velocity:

v = dx/dt

the equation of motion for a spring-mass system can be rewritten in terms of two first-order differential equations:

dv/dt = -k/m x - b/m v
dx/dt = v

In the above equation, the derivative of v is a function of v and x, and the derivative of x is a function of v. Since the solution of v as a function of time depends on x and the solution of x as a function of time depends on v, the two equations are coupled and must be solved simultaneously.

Most of the differential equations in engineering are higher-order equations. This means that they must be expanded into a series of first-order differential equations before they can be solved using numerical methods.

The next tab shows extending the fourth-order Runge-Kutta method discussed previously to a system of ordinary differential equations.






Skip Navigation Links.

Home Skip Navigation Links
   Algorithms, Graphics, Vectors,
            implementation techniques.
   Mineral Transactions info,
            sales, agreements...
   Numerical Modeling services
            mineral environment.
   Want to know about Mining?
            basic knowledge here...
   What are Mineral Commodities?
            our elementary charts.
   Math, Analysis and More...
            our expertise in the matter.

 

Platform Implementation

Home Algorithm Implementation
We design applications for different environments and platforms...
        Home Graphics and Animation
The graphics classes in Smalltalk were designed...
        Home Optimization Algorithms
An optimization problem is a numerical problem...
        Home Vectors and Matrices
The concise notation introduced in linear algebra for vector...
 



2017 © Keystone Mining Post  |   2461 E. Orangethorpe Av., Fullerton, CA 92631 USA  |   info@keystoneminingpost.com