Client Account:   Login
Home Site Statistics   Contact   About Us   Wednesday, May 24, 2017

users on-line: 2 | Forum entries: 6   
j0182084- Back to Home
   Skip Navigation LinksHOME › AREAS OF EXPERTISE › Curve Fitting Solutions › ~ Polynomial Fit Method


"Curve Fitting Solutions"
Polynomial Fit Method


x-array = { , , , , , }
y-array = { , , , , , }



[ Initial x-array: { 0, 1, 2, 3, 4, 5 } ]
[ Initial y-array: { 2, 1, 4, 4, 3, 2 } ]
                       

IMPLEMENTATION
Polynomial Fit Method

As we mentioned before, please refer to ("Straight Line Fit Method") the polynomial fit is a special case of the linear least squares methods.

Algorithm Creation

In this case, the basis function becomes:

fj(x) = xj,    j = 0,1,...,m

where the matrix and vector in the normal equation become,

Αjk = ∑ni=0  xjj + k,     βk = ∑ni=0  xik yi

Testing the Polynomial Fit Method

In order to test the Polynomial Fit Method as defined above, a new TestPolynomialFit() static method has been added and executed. Supporting code and methods are not shown.

           static void TestPolynomialFit();
              {
                 ListBox1.Items.Clear();
                 double[] xarray = new double[] { t1, t2, t3, t4, t5, t6 };
                 double[] yarray = new double[] { t7, t8, t9, t10, t11, t12 };
                 {
                    double sigma = 0.0;
                    VectorR results = CurveFitting.PolynomialFit(xarray, yarray, m, out sigma);
                    ListBox1.Items.Add("\nOrder of polynomial m = " + m.ToString() + ",
                       Standard deviation = " + sigma.ToString());
                    ListBox1.Items.Add("Coefficients = " + results.ToString());
                    ListBox1.Items.Add(" ");
                 }
              }

As a sample we provide the input data points using two double arrays x-array and y-array. We used the same input function as in ("Straight Line Fit Method"). Running this example generates results shown above. Note the order of the polynomial is given by simple iteration from 1 to 3.

From these results we see that the quadratic polynomial with m = 2:

f(x) = 1.2857 + 1.6x - 0.2857x2

produces the smallest deviation, which can be considered as the best fit to the data.

The user can manipulate all values and try variations on the arrays themselves by specifying new estimate values.



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation

Skip Navigation Links.

Home

Home Math, Analysis & More,
  our established expertise..."

EIGENVALUE SOLUTIONS...
  Eigen Inverse Iteration
  Rayleigh-Quotient Method

INTERPOLATION APPLICATIONS...
  Cubic Spline Method
  Newton Divided Difference

 

Applied Mathematical Algorithms

    Home Complex Functions
A complex number z = x + iy, where...
     Home Non-Linear Systems
Non-linear system methods...
     Home Numerical Differentiation
Construction of numerical differentiation...
     Home Numerical Integration
Consider the function I = ah f(x)dx where...
 

2006-2017 © Keystone Mining Post  |   2461 E. Orangethorpe Av., Fullerton, CA 92631 USA  |   info@keystoneminingpost.com