Client Account:   Login
Home Site Statistics   Contact   About Us   Saturday, August 19, 2017

users on-line: 2 | Forum entries: 6   
Pj0182295- Back to Home
   Skip Navigation LinksHOME › AREAS OF EXPERTISE › Interpolation Applications › ~ Lagrange Method


"Interpolation Solutions"
Lagrange Method
X =
Y =

Array X = { , , , , }
Array Y = { , , , , }
Specify New X values = { , , }



[ Initial ArrayValues X: {1,2,3,4,5} ]
[ Initial ArrayValues Y: {1,4,9,16,25} ]
[ Initial LagrangeX Values specified: {2,3,1} ]

IMPLEMENTATION
Lagrange Interpolation

The Lagrange interpolation is a classical technique for performing interpolation. Sometimes this interpolation is also called the polynomial interpolation. In the first order approximation, it reduces to a linear interpolation, a concept also applied in (see Cubic Spline Method).

Algorithm Creation

For a given set of n + 1 data points (x0,y0),(x1,y1),..., (xn,yn), where no two xi are the same, the interpolation polynomial in the Lagrange form is a linear combination:

y = f(x) = ∑i=0n li(x) f(xi)


Testing the Lagrange Method

In order to test the Lagrange method as defined above, a new TestLagrange() static method has been added and executed. Supporting code and methods are not shown.

           static void TestLagrange();
              {
                 ListBox1.Items.Clear();
                 ListBox2.Items.Clear();
                 double[] xarray = new double[] { t1, t2, t3, t4, t5 };
                 double[] yarray = new double[] { t6, t7, t8, t9, t10 };
                 double[] x = new double[] { t11, t12, t13 };
                 double[] y = Interpolation.Lagrange(xarray, yarray, x);
                 VectorR vx = new VectorR(x);
                 VectorR vy = new VectorR(y);
                 ListBox1.Items.Add(" " + vx.ToString());
                 ListBox2.Items.Add(" " + vy.ToString());
              }

We first defined a set of data points as xarray and yarray. We then compute the y values at the xLagrange values specified. The user can manipulate all values and try variations on the arrays themselves as well as specifying new xLagrange values.



Other Implementations...


Object-Oriented Implementation
Graphics and Animation
Sample Applications
Ore Extraction Optimization
Vectors and Matrices
Complex Numbers and Functions
Ordinary Differential Equations - Euler Method
Ordinary Differential Equations 2nd-Order Runge-Kutta
Ordinary Differential Equations 4th-Order Runge-Kutta
Higher Order Differential Equations
Nonlinear Systems
Numerical Integration
Numerical Differentiation
Function Evaluation

Skip Navigation Links.

Home

Home Math, Analysis & More,
  our established expertise..."

EIGENVALUE SOLUTIONS...
  Eigen Inverse Iteration
  Rayleigh-Quotient Method

INTERPOLATION APPLICATIONS...
  Cubic Spline Method
  Newton Divided Difference

 

Applied Mathematical Algorithms

    Home Complex Functions
A complex number z = x + iy, where...
     Home Non-Linear Systems
Non-linear system methods...
     Home Numerical Differentiation
Construction of numerical differentiation...
     Home Numerical Integration
Consider the function I = ah f(x)dx where...
 

2006-2017 © Keystone Mining Post  |   2461 E. Orangethorpe Av., Fullerton, CA 92631 USA  |   info@keystoneminingpost.com